GEOGLAM (GEO Global Agricultural Monitoring) Crop Assessment Tool

The Group on Earth Observations, a partnership of governments and international organizations, developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community’s capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth Observations (EO), which include satellite and ground-based observations. This initiative is designed to build on existing agricultural monitoring programs and initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing.

The GEOGLAM Crop Monitor provides the Agricultural Market Information System (AMIS) with an international and transparent multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soy) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type.

Sources and Disclaimers: The Crop Monitor assessment is conducted by GEOGLAM with coordination from the University of Maryland. Inputs are from the following partners (in alphabetical order): Argentina (Buenos Aires Grains Exchange, INTA), Asia Rice Countries (AFSIS, ASEAN+3 & Asia RiCE), Australia (ABARES & CSIRO), Brazil (CONAB & INPE), Canada (AAFC), China (CAS), EU (EC JRC MARS), Indonesia (LAPAN & MOA), International (CIMMYT, FAO, IFPRI & IRRI), Japan (JAXA ), Mexico (SIAP), Russian Federation (IKI), South Africa (ARC & GeoTerraImage & SANSA), Thailand (GISTDA & OAE), Ukraine (NASU-NSAU & UHMC), USA (NASA, UMD, USGS – FEWS NET, USDA (FAS, NASS)), Viet nam (VAST & VIMHE-MARD). The findings and conclusions in this joint multi-agency report are consensual statements from the GEOGLAM experts, and do not necessarily reflect those of the individual agencies represented by these experts. Map data sources: Major crop type areas based on the IFPRI/IIASA SPAM 2005 beta release (2013), USDA/NASS 2013 CDL, 2013 AAFC Annual Crop Inventory Map, GLAM/UMD, GLAD/UMD, Australian Land Use and Management Classification (Version 7), SIAP, ARC, and JRC. The GEOGLAM crop calendars are compiled with information from AAFC, ABARES, ARC, Asia RiCE, Bolsa de cereales, CONAB, INPE, JRC, FAO, FEWS NET, IKI, INTA, SIAP, UHMC, USDA FAS, and USDA NASS.

Replication Data for: Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]

Crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding.

Replication Data for: Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato (Ipomoea batatas (L.) Lam., I. series Batatas)

Crop wild relatives of sweetpotato (Ipomoea batatas (L.) Lam., I. series Batatas) have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding